Abstract

Male DNA screening is important in forensic investigations, such as sexual assault cases. Although quantitative real-time PCR is a robust method for detection of male DNA, it is time-consuming and labor-intensive. We herein report the development of a male DNA-targeted loop-mediated isothermal amplification (LAMP) assay that can be used for both laboratory-based fluorescence analysis and on-site lateral flow detection. The two detection systems are independent, but we streamlined the reaction before the detection by introducing a fluorescence probe and biotin-labeled primer into a single reaction. This allowed the evaluation of fluorescence signal followed by lateral flow detection. Both the fluorescence and lateral flow analyses detected as low as 10 pg of male DNA. We also integrated an alkaline lysis method with our LAMP assay. The direct assay successfully detected male DNA from forensic samples without purification. The workflow requires only <40 min for fluorescence analysis and <45 min for lateral flow detection. Furthermore, when combined with a lateral flow strip, this workflow does not require any sophisticated instruments. These findings suggest that our assay is a promising strategy for on-site male DNA screening as well as laboratory-based testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call