Abstract
To evaluate effects of loop diameter of a modified Kessler locking-loop (LL) suture on in vitro tensile strength and gapping characteristics of canine flexor tendon repairs. 48 cadaveric superficial digital flexor tendons from 24 adult medium- to large-breed dogs. Flexor tendons were randomly assigned to 4 groups (n = 12/group) and repaired with 2-0 polypropylene in a LL pattern with loops measuring 1, 2, 3, or 4 mm in diameter. Biomechanical loads, gap formation between tendon ends, and failure modes were evaluated and compared between groups. Increasing loop diameter from 1 to 4 mm significantly increased yield (P = .048), peak (P < .001), and failure (P < .001) loads. There were no significant differences in yield, peak, and failure loads between 1- and 2-mm loops. Load to 3-mm gap formation was significantly (P < .001) greater for 4-mm loops, compared with 1-, 2-, and 3-mm loops. Failure mode did not differ significantly among experimental groups, with 46 of 48 (96%) of constructs failing because of suture breakage. Loop diameter of a LL suture pattern is an important biomechanical variable that influences construct biomechanics of canine tendon suture repairs. Loop diameters > 3 mm are recommended when the size of the tendon allows. Further studies are necessary to determine the in vivo effect of these findings, particularly the effects on tendon blood supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.