Abstract

BackgroundChromatin loops are an essential factor in the structural organization of the genome; however, their detection in Hi-C interaction matrices is a challenging and compute-intensive task. The approach presented here, integrated into the HiCExplorer software, shows a chromatin loop detection algorithm that applies a strict candidate selection based on continuous negative binomial distributions and performs a Wilcoxon rank-sum test to detect enriched Hi-C interactions.ResultsHiCExplorer’s loop detection has a high detection rate and accuracy. It is the fastest available CPU implementation and utilizes all threads offered by modern multicore platforms.ConclusionsHiCExplorer’s method to detect loops by using a continuous negative binomial function combined with the donut approach from HiCCUPS leads to reliable and fast computation of loops. All the loop-calling algorithms investigated provide differing results, which intersect by n}{}sim 50% at most. The tested in situ Hi-C data contain a large amount of noise; achieving better agreement between loop calling algorithms will require cleaner Hi-C data and therefore future improvements to the experimental methods that generate the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.