Abstract
Abstract Although the upper-layer dynamics of the Loop Current and eddies in the Gulf of Mexico are well studied, the understanding of how they are coupled to the deep flows is limited. In this work, results from a numerical model are analyzed to classify the expansion, shedding, retraction, and deep-coupling cycle (the Loop Current cycle) according to the vertical mass flux across the base of the Loop. Stage A is the “Loop reforming” period, with downward flux and deep divergence under the Loop Current. Stage B is the “incipient shedding,” with strong upward flux and deep convergence. Stage C is the “eddy migration,” with waning upward flux and deep throughflow from the western Gulf into the Yucatan Channel. Because of the strong deep coupling between the eastern and western Gulf, the Loop’s expansion is poorly correlated with deep flows through the Yucatan Channel. Stage A is longest and the mean vertical flux under the Loop Current is downward. Therefore, because the net circulation around the abyssal basin is zero, the abyssal gyre in the western Gulf is cyclonic. The gyre’s strength is strongest when the Loop Current is reforming and weakest after an eddy is shed. The result suggests that the Loop Current cycle can force a low-frequency [time scales ∼ shedding periods; O(months)] abyssal oscillation in the Gulf of Mexico.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.