Abstract
A loop-augmented forest is a labeled rooted forest with loops on some of its roots. By exploiting an interplay between nilpotent partial functions and labeled rooted forests, we investigate the permutation action of the symmetric group on loop-augmented forests. Furthermore, we describe an extension of Foulkes’s conjecture and prove a special case. Among other important outcomes of our analysis are a complete description of the stabilizer subgroup of an idempotent in the semigroup of partial transformations and a generalization of the (Knuth–Sagan) hook length formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.