Abstract
Looming signals (signals that indicate the rapid approach of objects) are behaviorally relevant signals for all animals. Accordingly, studies in primates (including humans) reveal attentional biases for detecting and responding to looming versus receding signals in both the auditory and visual domains. We investigated the neural representation of these dynamic signals in the lateral belt auditory cortex of rhesus monkeys. By recording local field potential and multiunit spiking activity while the subjects were presented with auditory looming and receding signals, we show here that auditory cortical activity was biased in magnitude toward looming versus receding stimuli. This directional preference was not attributable to the absolute intensity of the sounds nor can it be attributed to simple adaptation, because white noise stimuli with identical amplitude envelopes did not elicit the same pattern of responses. This asymmetrical representation of looming versus receding sounds in the lateral belt auditory cortex suggests that it is an important node in the neural network correlate of looming perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.