Abstract
Nanotechnology has delivered an amazing range of new materials such as nanowires, tubes, ribbons, belts, cages, flowers, and sheets. However, these are usually circular, cylindrical, or hexagonal in nature, while nanostructures with square geometries are comparatively rare. Here, a highly scalable method is reported for producing vertically aligned Sb-doped SnO2 nanotubes with perfectly-square geometries on Au nanoparticle covered m-plane sapphire using mist chemical vapor deposition. Their inclination can be varied using r- and a-plane sapphire, while unaligned square nanotubes of the same high structural quality can be grown on silicon and quartz. X-ray diffraction measurements and transmission electron microscopy show that they adopt the rutile structure growing in the [001] direction with (110) sidewalls, while synchrotron X-ray photoelectron spectroscopy reveals the presence of an unusually strong and thermally resilient 2D surface electron gas. This is created by donor-like states produced by the hydroxylation of the surface and is sustained at temperatures above 400°C by the formation of in-plane oxygen vacancies. This persistent high surface electron density is expected to prove useful in gas sensing and catalytic applications of these remarkable structures. To illustrate their device potential, square SnO2 nanotube Schottky diodes and field effect transistors with excellent performance characteristics are fabricated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.