Abstract

We analyse light curves covering four years of 39 fast-rotating ($P_\mathrm{rot}< 1d$) late-type active stars from the Kepler database. Using time-frequency analysis (Short-Term Fourier-Transform), we find hints for activity cycles of 300-900 days at 9 targets from the changing typical latitude of the starspots, which, with the differential rotation of the stellar surface change the observed rotation period over the activity cycle. We also give a lowest estimation for the shear parameter of the differential rotation, which is ~0.001 for the cycling targets. These results populate the less studied, short period end of the rotation-cycle length relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.