Abstract

Sleep Slow Oscillations (SSOs), paradigmatic EEG markers of cortical bistability (alternation between cellular downstates and upstates), and sleep spindles, paradigmatic EEG markers of thalamic rhythm, are two hallmarks of sleeping brain. Selective thalamic lesions are reportedly associated to reductions of spindle activity and its spectrum ~14Hz (sigma), and to alterations of SSO features. This apparent, parallel behavior suggests that thalamo-cortical entrainment favors cortical bistability. Here we investigate temporally-causal associations between thalamic sigma activity and shape, topology, and dynamics of SSOs. We recorded sleep EEG and studied whether spatio-temporal variability of SSO amplitude, negative slope (synchronization in downstate falling) and detection rate are driven by cortical-sigma-activity expression (12–18Hz), in 3 consecutive 1s-EEG-epochs preceding each SSO event (Baselines). We analyzed: (i) spatial variability, comparing maps of baseline sigma power and of SSO features, averaged over the first sleep cycle; (ii) event-by-event shape variability, computing for each electrode correlations between baseline sigma power and amplitude/slope of related SSOs; (iii) event-by-event spreading variability, comparing baseline sigma power in electrodes showing an SSO event with the homologous ones, spared by the event. The scalp distribution of baseline sigma power mirrored those of SSO amplitude and slope; event-by-event variability in baseline sigma power was associated with that in SSO amplitude in fronto-central areas; within each SSO event, electrodes involved in cortical bistability presented higher baseline sigma activity than those free of SSO. In conclusion, spatio-temporal variability of thalamocortical entrainment, measured by background sigma activity, is a reliable estimate of the cortical proneness to bistability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.