Abstract

Photodissociation of pyruvic acid (PA) was studied in the gas-phase at 193 nm using two complementary techniques. The time-sliced velocity map imaging arrangement was used to determine kinetic energy release distributions of fragments and estimate dissociation timescales. The multiplexed photoionization mass spectrometer setup was used to identify and quantify photoproducts, including isomers and free radicals, by their mass-to-charge ratios, photoionization spectra, and kinetic time profiles. Using these two techniques, it is possible to observe the major dissociation products of PA photodissociation: CO2, CO, H, OH, HCO, CH2CO, CH3CO, and CH3. Acetaldehyde and vinyl alcohol are minor primary photoproducts at 193 nm, but products that are known to arise from their unimolecular dissociation, such as HCO, H2CO, and CH4, are identified and quantified. A multivariate analysis that takes into account the yields of the observed products and assumes a set of feasible primary dissociation reactions provides a reasonable description of the photoinitiated chemistry of PA despite the necessary simplifications caused by the complexity of the dissociation. These experiments offer the first comprehensive description of the dissociation pathways of PA initiated on the S3 excited state. Most of the observed products and yields are rationalized on the basis of three reaction mechanisms: (i) decarboxylation terminating in CO2 + other primary products (∼50%); (ii) Norrish type I dissociation typical of carbonyls (∼30%); and (iii) O-H and C-H bond fission reactions generating the H atom (∼10%). The analysis shows that most of the dissociation reactions create more than two products. This observation is not surprising considering the high excitation energy (∼51 800 cm-1) and fairly low energy required for dissociation of PA. We find that two-body fragmentation processes yielding CO2 are minor, and the expected, unstable primary co-fragment, methylhydroxycarbene, is not observed because it probably undergoes fast secondary dissociation and/or isomerization. Norrish type I dissociation pathways generate OH and only small yields of CH3CO and HOCO, which have low dissociation energies and further decompose via three-body fragmentation processes. Experiments with d1-PA (CH3COCOOD) support the interpretations. The dissociation on S3 is fast, as indicated by the products' recoil angular anisotropy, but the roles of internal conversion and intersystem crossing to lower states are yet to be determined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.