Abstract

The lookahead approach for binary-tree-based search in constraint solving favors branching that provide the lowest upper bound for the remaining search space. The approach has recently been applied in instance partitioning in divide-and-conquer-based parallelization, but in general its connection to modern, clause-learning solvers is poorly understood. We show two ways of combining lookahead approach with a modern DPLL(T)-based SMT solver fully profiting from theory propagation, clause learning, and restarts. Our thoroughly tested prototype implementation is surprisingly efficient as an independent SMT solver on certain instances, in particular when applied to a non-convex theory, where the lookahead-based implementation solves 40% more unsatisfiable instances compared to the standard implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.