Abstract

Cryptographic hash functions are widely used in many information security applications like digital signatures, message authentication codes (MACs), and other forms of authentication. In response to recent advances in cryptanalysis of commonly used hash algorithms, National Institute of Standards and Technology (NIST) announced a publicly open competition for selection of new standard Secure Hash Algorithm called SHA-3. One important aspect of this competition is evaluation of hardware performances of the candidates. In this work we present efficient hardware implementations of SHA-3 finalists: JH, Keccak and Skein. We propose high speed architectures using Look-Up Table (LUT) resources on FPGAs, to minimize chip area and to reduce critical path lengths. This approach allows us to design data paths of SHA-3 finalists with minimum resources and higher clock frequencies. We implemented and investigated the performance of these candidates on modern and latest FPGA devices from Xilinx. This work serves as performance investigation of leading SHA-3 finalists on most up-to-date FPGAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call