Abstract

AbstractThe processes of new particle formation (NPF) and growth are important contributors to cloud condensation nuclei (CCN) concentrations, and CCN are important for climate from their impact on planetary radiative forcing. While the general ubiquity and importance of NPF is understood, the vertical extent and governing mechanisms of NPF and growth in the lower troposphere are uncertain. We present an analysis of four NPF events and two non‐NPF events during the HI‐SCALE field campaign at the Southern Great Plains observatory in Oklahoma, USA. First, we analyzed airborne and ground‐based observations of aerosol and gas‐phase properties. Second, we used a column aerosol chemistry and microphysics model to probe factors that influence the vertical profile of NPF. During HI‐SCALE, we found several instances of enhanced NPF occurring several hundred meters above the surface; however, the spatio‐temporal characteristics of the observed NPF made comparisons between airborne‐ and ground‐based observations difficult. The model represented the observed NPF (or lack of NPF) and particle growth at the surface to final diameters within 10 nm. The model predicted enhanced NPF rates in the upper mixed layer, and this enhancement is primarily due to the temperature dependence in the NPF schemes, but this was also dependent on the vertical profile of gas‐phase precursors measured during HI‐SCALE. We found vertical mixing in the model either enhanced or suppressed NPF rates, aerosol number concentrations, and particle growth rates at the surface. Finally, our analysis provides insights for future field campaigns and modeling efforts investigating the vertical profile of NPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call