Abstract

Pulsed arterial spin labelling remains a non-invasive and highly used method for the study of rodent cerebral blood flow (CBF). Flow-sensitive alternating inversion recovery (FAIR) is one of the most commonly used MR-sequences for this purpose and exists with many different strategies to record the images. This study investigates Look-Locker (LL) TrueFISP readout for FAIR as an alternative to the standard EPI readout, which is provided by the manufacturer. The aim was to show the improved image quality using TrueFISP and to verify the reproducibility of the determination of the cerebral blood flow values. The measurement of many inversion points also allowed to investigate the influence of the correct blood relaxation rate on the fit of the CBF data. For the LL-FAIR TrueFISP an in-house written method was created. The method was tested on a group of C57BL/6 mice at the field strength of 9.4 T. The results show CBF maps with less distortion than for EPI and the values found are in good agreement with the literature. A comparison of the CBF values found with EPI and LL-TrueFISP shows very small differences, most being not significant. In conclusion, the method presented gives equivalent CBF maps in comparison to standard FAIR-EPI. Both methods have the same measurement time. TrueFISP has the advantage to EPI of producing undistorted images over larger areas of the mouse brain. It is advisable to check the value of the blood relaxation rate by measurement or to estimate it as a fitting parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.