Abstract

Ochratoxin A (OTA), a secondary fungal metabolite with nephrotoxicity, is widespread in numerous kinds of feeds and foodstuffs. Ursolic acid (UA), a water-insoluble pentacyclic triterpene acid, exists in a wide range of food materials and medicinal plants. Our earlier researches provided preliminary evidence that mitochondria- and mitochondria-associated endoplasmic reticulum membranes (MAMs)-located stress-responsive Lon protease 1 (Lonp1) had a protective function in OTA-induced nephrotoxicity, and the renoprotective function of UA against OTA partially due to Lonp1. However, whether other MAMs-located protiens, such as endoplasmic reticulum stress (ERS)-responsive Sigma 1-type opioid receptor (Sig-1R), contribute to the protection of UA against OTA-induced nephrotoxicity together with Lonp1 needs further investigation. In this study, the cell viability, reactive oxygen species, and protein expressions of human proximal tubule epithelial-originated kidney-2 (HK-2) cells varied with OTA and/or UA/CDDO-me/AVex-73/Sig-1R siRNA treatments were determined. Results indicated that a 24 h-treatment of 5μM OTA could significantly induce mitochondrial-mediated apoptosis via repressing Lonp1 and Sig-1R, thereby enhancing the protein expressions of GRP78, p-PERK, p-eIF2α, CHOP, IRE1α, and Bax, and inhibiting the protein expression of Bcl-2 in HK-2cells, which could be remarkably relieved by a 2 h-pre-treatment of 4μM UA (P<0.05). In conclusion, through mutual promotion between Lonp1 and Sig-1R, UA could effectively relieve OTA-induced apoptosis in vitro and break the vicious cycle between oxidative stress and ERS, which activated the mitochondrial apoptosis pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call