Abstract
It is observed that the generalized Davey–Stewartson equations are not valid for a long-wave short-wave resonance case. In the case where the phase velocity of the long longitudinal wave is equal to the group velocity of the short transverse wave, new ( 2 + 1 ) dimensional evolution equations, called the long-wave short-wave interaction equations, are derived to describe the resonance case. The special solutions of the long-wave short-wave interaction equations are also obtained in terms of Jacobian elliptic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.