Abstract

This paper continues our study on the initial-boundary value problem for a semilinear parabolic equation of fourth order which has been presented by Johnson-Orme-Hunt-Graff-Sudijono-Sauder-Orr [12] to describe the large-scale features of a growing crystal surface under molecular beam epitaxy. In the preceding paper [1], we already constructed a dynamical system generated by the problem and verified that the dynamical system has a finite-dimensional attractor (especially, every trajectory has nonempty $\omega$-limit set) and admits a Lyapunov function (of the form (3.1)). This paper is then devoted to showing longtime convergence of trajectory. We shall prove that every trajectory converges to some stationary solution as $t \to \infty$. As a matter of fact, we have obtained in [10] the similar result for the equation but under the Neumann like boundary conditions $\frac{\partial u}{\partial n}=\frac\partial{\partial n}\varDelta u=0$ on the unknown function $u$. In this paper, we want as in [1] to handle the Dirichlet boundary conditions $u=\frac{\partial u}{\partial n}=0$, maybe physically more natural conditions than before.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.