Abstract
The model under consideration is a catalytic branching model constructed in Dawson and Fleischmann (1997), where the catalysts themselves undergo a spatial branching mechanism. The key result is a convergence theorem in dimension d = 3 towards a limit with full intensity (persistence), which, in a sense, is comparable with the situation for the “classical” continuous super-Brownian motion. As by-products, strong laws of large numbers are derived for the Brownian collision local time controlling the branching of reactants, and for the catalytic occupation time process. Also, the catalytic occupation measures are shown to be absolutely continuous with respect to Lebesgue measure. © 1997 Elsevier Science B.V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.