Abstract

The dynamics of self-locomotion of active particles in aligned or liquid crystalline fluids strongly deviates from that in simple isotropic media. We explore the long-time dynamics of a swimmer moving in a three-dimensional smectic liquid crystal and find that the mean-square displacement transverse to the director exhibits a distinct logarithmic tail at long times. The scaling is distinctly different from that in an isotropic or nematic fluid and hints at the subtle but important role of the director fluctuation spectrum in governing the long-time motility of active particles. Our findings are based on a generic hydrodynamic theory and Brownian dynamics computer simulation of a three-dimensional soft mesogen model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.