Abstract

Microbes play an important role in the carbon cycle and nutrient flow of the soil ecosystem. However, the response of microbial activities to long-term warming over decades is poorly understood. To determine how warming changes ecoenzyme activity and microbial nutrient limitation, we conducted a long-term, 21 years, experiment, on the Qinghai—Tibet Plateau. We selected typical grass- and shrub-covered plots, used fiberglass open-top chambers (OTCs) to raise the temperature, conducted soil sampling at different depths, studied the response of nutrient-acquiring enzyme activity and stoichiometry, and conducted vector analysis of stoichiometry. Our results showed that long-term warming did not have a notable effect on the activity of nutrient-acquiring enzymes or enzymatic stoichiometry. However, Spearman correlation analysis indicated a significant and positive correlation between ecoenzyme activity and the available nutrients and microbial biomass in soil. Vector analysis of stoichiometry showed phosphorus limitation for all soil microbes at different depths, regardless of whether the soil experienced warming. These changes in enzymatic stoichiometry and vector analysis suggested that microbial nutrient limitation was not alleviated substantially by long-term warming, and warming did not considerably affect the stratification of microbial nutrient limitation. Our research has also shown that long-term warming does not significantly change soil ecoenzyme activity and original microbial nutrient limitation at different soil depths within the OTUs’ impact range. These results could help improve understanding of microbial thermal acclimation and response to future long-term global warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.