Abstract
In recent decades, freshwater ecosystems have been threatened worldwide by multiple simultaneous stressors, including eutrophication, climate change and competing demands for water sources. However, understanding of the long-term variation of zooplankton communities remains limited because long-term observations are lacking. Here, using a long-term (19 year) monitoring dataset, we demonstrate the spatio-temporal variation of zooplankton communities in Lake Taihu, a large, shallow, heterogenous lake in China. With the development of eutrophication, the abundance and biomass of zooplankton first increased from 1998 to 2004, and then exhibited a decreasing trend thereafter. Specifically, the population of rotifer dramatically declined after 2001, while the abundance of copepod and cladoceran showed an increasing trend even though their biomass decreased significantly after 2008. The dominance of small cladocerans (Bosmina coregoni and Ceriodaphnia cornuta) and copepod (Limnothora sinensis) significantly increased with decreasing rotifer density after 2014. Moreover, the zooplankton community structure exhibited heterogenous spatial population dynamics. Cladoceran and rotifer were predominant in cyanobacteria-dominated regions, while a higher proportion of copepod were found in macrophyte-dominated regions. Analyses revealed that zooplankton communities were strongly affected by climate warming and nutrients. These results reinforce previous work demonstrating that the development of eutrophication and climate warming could change the structure of zooplankton community and increase the dominance of small-bodied crustacean. Our findings address the recognized gap in understanding the variation of the zooplankton community in Lake Taihu, and provide an opportunity to evaluate ongoing changes in the zooplankton community related to future environmental change scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.