Abstract
ABSTRACT We studied the long-term evolution of the spectral–temporal correlated properties of the black hole candidate Swift J1753.5−0127 from the onset of its outburst until 2011 with the Rossi X-ray Timing Explorer (RXTE). The source stayed most of its lifetime during hard state, with occasionally transitioned to the hard intermediate state. Similar to typical black hole transients, Swift J1753.5−0127 traces a clear hard line in absolute rms–intensity diagram during the low hard state, with expected highest absolute rms, while shows a clear turn during the hard intermediate state, accompanied by lower absolute rms. Different from Cyg X-1, we found that frequency-dependent time lag increased significantly in the 0.02–3.2 Hz band during state transition in this source. The X-ray time lags in 0.02–3.2 Hz can therefore be used as indicators of state transition in this source. Type-C quasi-periodic oscillation frequency is positively related with its fractional rms and X-ray photon index, suggesting a moving inwards disc/corona scenario. We discussed the physical interpretation of our results in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.