Abstract
Abstract We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96−0.02. All six sources were also observed in the isotopologue transition of the 6 cm H2CO line; absorption was detected in five of the sources. Estimated column density ratios [ ]/[ ] are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.