Abstract

The canopy layer urban heat island (CLUHI) and surface urban heat island (SUHI) refer to higher canopy layer and land surface temperatures in urban areas than in rural areas, respectively. The long-term trends of CLUHIs are poorly understood at the regional scale. In this study, 1 km resolution air temperature (Ta) data for the 2001–2018 period in the mainland of China were mapped using satellite data and station-based Ta data. Subsequently, the temporal trends of the CLUHI and SUHI intensities (CLUHII and SUHII, respectively) were investigated in 272 cities in the mainland of China. The Ta was estimated with high accuracy, with a root mean square error ranging from 0.370 °C to 0.592 °C. The CLUHII and SUHII increased significantly in over half of the cities in spring and summer, over one-third of the cities in autumn, and over one-fifth of the cities in winter. The trends of the nighttime SUHII were strongly related to the CLUHII calculated using mean and minimum Ta (correlation coefficients ranging from 0.613 to 0.770), whereas the relationships between the trends of the daytime SUHII and CLUHII were relatively weak. Human activities were the major driving forces for the increase in the CLUHII and SUHII. The difference in impervious surfaces between urban and rural areas was significantly correlated with the CLUHII and SUHII in approximately half of the cities. Meteorological factors were significantly correlated with the CLUHII and SUHII in few cities. This study highlights the trends of the significant increase in the CLUHII and SUHII in the mainland of China, which may have negative effects on humans and the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call