Abstract
Trend analysis has become one of the most important issues in hydro-meteorological variables study due to climate change and the focus given to it in the recent past from the scientific community. In this study, long-term trends of rainfall are analyzed in eight stations located in semi-arid central Gujarat region, India by considering time series data of 116 years (1901-2016). Discrete wavelet transform (DWT) as a dyadic arrangement of continuous wavelet transformation combined with the widely applied and acknowledged Mann-Kendall (MK) trend analysis method were applied for analysis of trend and dominant periodicities in rainfall time series at monthly, annual and monsoonal time scales. Initially, rainfall time series applied in this study were decomposed using DWT to generate sub-time series at high and low frequencies, before applying the MK trend test. Further, the Sequential Mann-Kendall (SQMK) test was also applied to find out the trend changing points. The result showed that at the monthly annual and monsoon time scales, the trends in rainfall were significantly decreasing in most of the station. The 4-month and 8-month components were found as dominant at the monthly time series and the 2-year and 4-year component were found as dominant at the monsoon time series, whereas the 2-year components were observed as dominant in the annual time scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.