Abstract

Allogeneic haematopoietic stem cell transplantation (HSCT) is a frequent curative therapy for numerous haematological malignancies. However, HSCT is limited by the occurrence of graft-versus-host disease (GVHD), with current therapies restricted to general immunosuppression. Activation of the P2X7 receptor by extracellular adenosine triphosphate (ATP) causes inflammation and tissue damage in GVHD. Short-term pharmacological blockade of P2X7 has been shown to reduce clinical disease and/or reduce inflammatory markers in allogeneic and humanized mouse models of GVHD. The current study demonstrates that long-term P2X7 blockade by intra-peritoneal injection of Brilliant Blue G (BBG) thrice weekly for up to 10 weeks did not impact human (h) peripheral blood mononuclear cell (PBMC) engraftment, predominantly T cells, in blood at 3 weeks post-hPBMC injection or in spleens at end-point in humanized mice. Histological analysis demonstrated long-term BBG treatment reduced leukocyte infiltration in the livers of humanized mice. Immunohistochemical analysis demonstrated that BBG treatment reduced liver apoptosis. Long-term BBG treatment did not alter clinical disease, mRNA expression of pro-inflammatory markers in tissues or serum human interferon (IFN)-γ concentrations. Therefore, this study demonstrates that P2X7 activation plays a role in GVHD pathogenesis in the livers of humanized mice, supporting a role for this receptor in GVHD development in HSCT recipients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.