Abstract

The long-term (>1 Ga) thermal histories of cratons are enigmatic, with geologic data providing only limited snapshots of their evolution. We use zircon (U–Th)/He (zircon He) thermochronology and age-composition correlations to understand the Proterozoic–Phanerozoic thermal history of Archean Wyoming province rocks exposed in the northern Laramide ranges of western North America. Zircon He ages from the Wind River Range (54 dates) and Bighorn Mountains (32 dates) show negative correlations with effective uranium (eU), a proxy for radiation damage. Zircon dates from the Bighorns are between 960 Ma (low-eU) and 20 Ma (high-eU) whereas samples from the Wind Rivers are between 582 Ma (low-eU) and 33 Ma (high-eU). We applied forward modeling using the zircon radiation damage and annealing model ZrDAAM to understand this highly variable dataset. A long-term t–T path that is consistent with the available geologic constraints successfully reproduced age-eU correlations. The best fit to the Wind Rivers data involves two phases of rapid cooling at 1800–1600 Ma and 900–700 Ma followed by slower cooling until 525 Ma. During the Phanerozoic, these samples were heated to maximum temperatures between 160 and 125 °C prior to Laramide cooling to 50 °C between 60 and 40 Ma. Data from the Bighorn Mountains were successfully reproduced with a similar thermal history involving cooler Phanerozoic temperatures of ∼115 °C and earlier Laramide cooling between 85 and 60 Ma. Our results indicate that age-eU correlations in zircon He datasets can be applied to extract long-term thermal histories that extend beyond the most recent cooling event. In addition, our results constrain the timing, magnitude and rates of cooling experienced by Archean Wyoming Province rocks between recognized deformation events, including the >1 Ga period represented by the regionally-extensive Great Unconformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.