Abstract

Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call