Abstract

In a series of four experiments, the temporal development of acute inhibitory and delayed stimulatory effects of 17 beta-estradiol (E) on luteinizing hormone (LH) release by superfused rat anterior pituitary cells pulsed with gonadotropin-releasing hormone (GnRH) was studied. Dispersed anterior pituitary cells from ovariectomized rats were cultured on Bio-Beads for 3 days and then placed in columns and superfused for up to 24 hr. During superfusion, the cells were exposed to GnRH pulses (3 X 10(-9) M, one 6-min pulse/hr). Cells treated with E (3 X 10(-10) M) either before (only 24 hr prior to superfusion) or before and during superfusion released significantly (P less than 0.05) more LH in response to the first few pulses of GnRH than cells treated with diluent. In contrast, cells treated with E only during superfusion initially released less GnRH-induced LH than cells treated with diluent. In a subsequent experiment, the inhibitory effect of E reached a maximum by 1.5 hr (P less than 0.01), and then gradually disappeared after 4.5 hr. Cells superfused simultaneously with E and fixed "low"-dose GnRH (5 X 10(-10) M) pulses did not exhibit enhanced LH responses with time to that dose of GnRH. However, E-superfused cells responded more than diluent-superfused cells to subsequent stimulation with a higher-dose GnRH pulse. Superfusion of cells with E for 16.5 hr in the absence of GnRH pulses also did not increase release of LH to low-dose (5 X 10(-10) M) pulses of GnRH, yet did cause a transitory increase to subsequent high-dose (10(-8) M) GnRH pulses. In conclusion, these results demonstrate the direct biphasic inhibitory then stimulatory effects of E on GnRH-induced LH release by superfused rat anterior pituitary cells. Expression of the stimulatory effect of E is related to the dose of GnRH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.