Abstract

This study is the first to evaluate the results of 60 years of restoring anadromous sea lamprey, Petromyzon marinus, to historical spawning and rearing habitats using fish passage at barrier dams in the Connecticut River, USA. We obtained counts of pre-spawning adult P. marinus annually passed upstream at Holyoke Dam (river km 140), Connecticut River, MA, during 37 years (1978–2014), and we counted P. marinus nests during 25 years (1986–2010) in the Fort River, a tributary upstream of Holyoke Dam. These two data sets were used to study relationships between adult passage and subsequent nesting and to study nesting timing and ecology. During the 37 years, annual adult P. marinus abundance at Holyoke Dam ranged from 15,000 to 95,000, but regression analysis found no trend (p = .50) for increasing annual adult abundance with years. However, during the 37 years, adults gained access via fish passage at dams to an estimated double the amount of spawning and rearing habitat upstream compared to the 1970s. The lack of a trend for increased adult abundance is consistent with a hypothesis of non-natal river homing by adults. However, the lack of a trend in adult abundance, when many more larvae are likely present in the watershed compared to the 1970s, is inconsistent with the hypothesis that greater numbers of larvae (and greater concentration of larval pheromone) results in greater number of adults attracted to a river. Instead of an abundance trend of adults with years, we found a rare life history phenomenon occurs in anadromous adult P. marinus ─ an abundance cycle with peaks at 6 year intervals (autocorrelation analysis, p = .04). Comparison of passage timing with nesting timing found passage did not affect nesting initiation or duration (p = .61). Annual date of nesting initiation strongly affected the duration of nesting with earlier nesting resulting in longer nesting (p = .001). Time series comparing Fort River temperature and discharge with nesting found these factors did not clearly predict annual initiation of nesting. This suggests a role for day length (photoperiod) as the trigger for nesting initiation (most nesting began annually during 1–14 June, all year mean, 7 June), regardless of river conditions. However, river discharge may affect nesting ecology because most nesting occurred during decreasing discharge when variability in daily discharge was small (stable discharge). The present research on passage and nesting contributes to a new Connecticut River restoration program for P. marinus, which is a keystone fish species in the watershed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call