Abstract
In this work, a combined concept called Spar-Toru-Combination (STC) involving a spar-type floating wind turbine (FWT) and an axi-symmetric two-body wave energy converter (WEC) is considered. From the views of both long-term fatigue damage prediction of the mooring lines and the annual energy production estimation, a coupled analysis of wind-wave induced long-term stochastic responses has been performed using the SIMO-TDHMILL code in the time domain, which includes 79200 one-hour short term cases (the combination of 22 selected mean wind speeds * 15 selected significant wave heights * 12 selected spectral peak wave periods * 20 random seeds). The hydrodynamic loads on the Spar and Torus are estimated using potential theory, while the aerodynamic loads on the wind rotor are calculated by the validated simplified thrust force model in the TDHMILL code. Considering the long-term wind-wave joint distribution in the northern North Sea, the annual fatigue damage of the mooring line for the STC system is obtained by using the S-N curve approach and Palmgren-Miner’s linear damage hypothesis. In addition, the annual wind and wave power productions are also obtained by using hourly mean output power for each short-term condition and the joint wind-wave distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.