Abstract

A critical step in providing better phosphor solution for white light emitting diode (LED) is to utilize inexpensive silicate phosphors with strong thermal stability. Here, we demonstrate yellow silicate phosphor-embedded glass thick films with a high luminous efficacy of ∼32 lm/W at 200 mA as a nonconventional remote-phosphor approach. The simple screen-printing process of a paste consisting of (Ba,Sr,Ca)₂SiO₄:Eu²⁺ phosphor and a low softening point glass creates a planar remote structure on a regular soda lime silicate glass with controllable film thickness and location (top vs bottom) of the phosphor layer. The glass matrix provides promising densification and adhesion with the substrate at the optimal low temperature of 410 °C, with the long-term stability in luminous efficacy over 500 h of operation. The proposed phosphor structure has important implications to overcome current limitations as phosphors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call