Abstract

High Andean wetlands of the elevated plateaus of the Andes Mountains of Chile, Argentina, Perú and Bolivia are true oases that sustain life in this arid region. Despite their ecological value, they have been rarely studied and are vulnerable to climate change and human activities that require groundwater resources. One such activity that may be intensified in the near future is mining for nonmetallic minerals such as lithium, whose worldwide demand is expected to increase with the rise of electric vehicles that need batteries. To determine a baseline of the natural dynamics of these systems, which allows sustainable management, it is essential to understand the spatiotemporal dynamics of these wetlands. In this article, we studied the temporal and spatial dynamics of high Andean wetlands of Chile, with the aim of identifying the key processes that govern their dynamics. To do this, we used time series of Landsat data from 1984 to 2019 to study 10 high Andean wetlands. Furthermore, to characterize the climate variability in these systems, we studied the long-term relation between the changes in water and vegetation areas with rainfall and evaporation variability. It was found that the groundwater reservoir plays a key role in sustaining the high Andean wetlands. Wet years with a period of occurrence of 20–30 years are the years in which the groundwater reservoirs are actually recharged, and in between wet years, the groundwater reservoirs gradually release the water that sustains the aquatic ecosystems. Hence, groundwater exploitation should be carefully designed from a long-term perspective, as groundwater levels could take decades to recover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call