Abstract

As chronic stress is a significant risk factor for several cardiovascular disorders, this study investigated the hypothesis that long-term stress produced by crowding may lead to alterations in nitric oxide (NO) production and NO-dependent relaxation in the course of stress, resulting in endothelial dysfunction and hypertension in Wistar–Kyoto (WKY) rats. For this purpose, male WKY rats were divided into control (480 cm2/rat, four rats/cage, n = 8) and crowded (200 cm2/rat, five rats/cage, n = 10) groups for 8 or 12 weeks. Vasorelaxation was evaluated in vitro as a response to acetylcholine (ACh) of femoral arteries pre-contracted by serotonin, before and after NO synthase inhibition (NG-nitro-l-arginine methyl ester, 300 μmol/l). Crowding increased plasma corticosterone concentration but failed to affect blood pressure (determined by tail-cuff plethysmography) of rats. NO production was unchanged in the hypothalamus and left ventricle of both stressed groups; however it was significantly elevated in the aorta. Maximal ACh-induced relaxation was elevated significantly after 8-week stress, but reduced after 12 weeks. Stress elevated the NO-dependent component and reduced the NO-independent component of ACh-induced relaxation in both crowded groups. However, a reduction in the NO-independent component was more pronounced after 12-week versus 8-week stress. In conclusion, elevated endothelium-dependent relaxation was observed after 8-week stress, while the extension of stress exposure resulted in a reduction in arterial relaxation associated with a more pronounced decrease of its NO-independent component. Thus, elevation of the NO-dependent component of relaxation can be considered as an adaptation mechanism, and impairment of NO-independent relaxation might be the initial step in chronic stress-induced cardiovascular disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.