Abstract
A recent tomographic study proposed that high-pore pressure in the deeper portion of the locked zone of a subduction thrust resulting from metamorphic dehydration reactions may cause long-term slow slip events. The study used the concept of ‘critical fault stiffness’, which derives from laboratory-derived rate- and state-dependent friction laws. To test the proposition, we execute 2-D model calculations using laboratory-derived rate- and state-dependent friction laws. Our numerical result is against the proposition, but it can also be explained by the concept of the critical fault stiffness. We agree that metamorphic dehydration reactions definitely produce a bulk property of high fluid saturation, but we caution that they do not necessarily lead to high-pore pressure in the fault zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.