Abstract

Patients with schizophrenia with second-generation antipsychotics (SGAs) treatment have shown an increased risk of bone fragility and susceptibility to fracture; however, it is still unclear whether this risk is derived from the effect of antipsychotics on balance of bone metabolism. We investigated the changes of two bone turnover biomarkers (BTMs) concentrations in people with schizophrenia receiving SGAs: procollagen type I aminoterminal propeptide (PINP) and C-terminal telopeptide of type I collagen (CTX-1) as BTMs of osteogenesis and bone resorption, respectively, to explore how antipsychotics contribute to bone fragility. We recruited 59 Chinese male patients with schizophrenia (32 drug-naïve first-episode (DNFE) patients and 27 chronic patients) to undergo 8 weeks SGAs treatment. Fasting peripheral blood samples of pre- and posttreatment were collected, plasma levels of PINP and CTX-1 were measured. The interaction effects of group and time on PINP and CTX-1 concentrations were found (P = .016 and P = .008). There was a significant decrease for both BTMs concentrations of the posttreatment compared to the pretreatment (P<.001 and P = .003). Chronic patients had significantly higher changes of BTMs concentrations compared to DNFE patients (P = .048 and P = .024). There was a positive correlation of the two BTMs of pretreatment with disease course in DNFE group (r = .37, P = .039;r = .38, P = .035) and a negative correlation of PINP of pretreatment with age in the chronic group (r=-.40, P = .039). Long-term SGAs medication inhibited osteogenesis in a dose- and time-dependent manner and damaged the balance of bone formation and bone resorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call