Abstract

Low frequency sea-level variations and associated geostrophic currents in the central Great Barrier Reef (GBR) region near Townsville are studied using optimally-lagged multivariate regression. The analyses show that pressure-adjusted coastal sea levels and mid-shelf geostrophic currents are influenced predominantly by local along-shelf wind stress at the weather time-scale, and by climatic variables, such as atmospheric pressure and temperature, at seasonal and inter-annual time-scales. These forcing variables can specify sea levels over annual and inter-annual time-scales with a forecasting skill of 0.53 and 0.22, respectively (where 1.0 is perfect skill). Associated along-shelf geostrophic currents can be forecast with a skill of 0.57 over an annual time scale. If, instead, absolute coastal sea levels or offshore sea-level differences are used to specify the along-shelf geostrophic current, the forecasting skill is 0.75. A characteristic El Niño/Southern Oscillation (ENSO) response is detected for time periods up to 25 years in monthly sea-level both at Townsville and at western Pacific island sea-level stations. This spatially coherent response varies in intensity and phase within the Coral Sea. Sea-level differences show a pattern which characterizes known features of the large-scale circulation of the Coral Sea. These very low frequency sea-level variations in the Coral Sea must be taken into account to obtain accurate predictions of along-shelf geostrophic current variations on seasonal and inter-annual time scales. Regression analysis and a diagnostic river plume model show that the influence of the major rivers can produce sea-level changes due to buoyancy of order 5 cm. The corresponding errors in geostrophic velocities estimated using pressure-adjusted Townsville sea-level data alone are of order 5 cm s −1 rms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.