Abstract

There is overwhelming evidence that tropical coral reefs are severely impacted by human induced climate change. Assessing the capability of reef-building corals to expand their tolerance limits to survive projected climate trajectories is critical for their protection and management. Acclimation mechanisms such as developmental plasticity may provide one means by which corals could cope with projected ocean warming and acidification. To assess the potential of preconditioning to enhance thermal tolerance in the coral Pocillopora acuta, colonies were kept under three different scenarios from settlement to 17 months old: present day (0.9 °C-weeks (Degree Heating Weeks), + 0.75 °C annual, 400 ppm pCO2) mid-century (2.5 °C-weeks, + 1.5 °C annual, 685 ppm pCO2) and end of century (5 °C-weeks, + 2 °C annual, 900 ppm pCO2) conditions. Colonies from the present-day scenario were subsequently introduced to the mid-century and end of century conditions for six weeks during summer thermal maxima to examine if preconditioned colonies (reared under these elevated conditions) had a higher physiological performance compared to naive individuals. Symbiodiniaceae density and chlorophyll a concentrations were significantly lower in mid-century and end of century preconditioned groups, and declines in symbiont density were observed over the six-week accumulated heat stress in all treatments. Maximum photosynthetic rate was significantly suppressed in mid-century and end of century preconditioned groups, while minimum saturating irradiances were highest for 2050 pre-exposed individuals with parents originating from specific populations. The results of this study indicate preconditioning to elevated temperature and pCO2 for 17 months did not enhance the physiological performance in P. acuta. However, variations in trait responses and effects on tolerance found among treatment groups provides evidence for differential capacity for phenotypic plasticity among populations which could have valuable applications for future restoration efforts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call