Abstract

Fracture rate is increased in patients with active acromegaly and those in remission. Abnormalities of bone microstructure are present in patients with active disease and persist despite biochemical control after surgery. Effects of treatment with the GH receptor antagonist pegvisomant on bone microstructure were unknown. We studied 25 patients with acromegaly (15 men, 10 women). In 20, we evaluated areal bone mineral density (BMD) by dual-energy X-ray absorptiometry and bone turnover markers (BTMs) longitudinally, before and during pegvisomant treatment. After long-term pegvisomant in 17, we cross-sectionally assessed volumetric BMD, microarchitecture, stiffness, and failure load of the distal radius and tibia using high-resolution peripheral quantitative computed tomography (HRpQCT) and compared these results to those of healthy controls and 2 comparison groups of nonpegvisomant-treated acromegaly patients, remission, and active disease, matched for other therapies and characteristics. In the longitudinal study, areal BMD improved at the lumbar spine but decreased at the hip in men after a median ∼7 years of pegvisomant. In the cross-sectional study, patients on a median ∼9 years of pegvisomant had significantly larger bones, lower trabecular and cortical volumetric density, and disrupted trabecular microarchitecture compared to healthy controls. Microstructure was similar in the pegvisomant and acromegaly comparison groups. BTMs were lowered, then stable over time. In this, the first study to examine bone microstructure in pegvisomant-treated acromegaly, we found deficits in volumetric BMD and microarchitecture of the peripheral skeleton. BTM levels remained stable with long-term therapy. Deficits in bone quality identified by HRpQCT may play a role in the pathogenesis of fragility in treated acromegaly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call