Abstract

Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the effect of an over-nutrition state on DNA methylation of the Ins1 promoter in pancreatic beta cells. It provides new insights into the irreversible pathophysiology of diabetes.

Highlights

  • Type 2 diabetes is an insulin insufficiency state caused by decreased pancreatic beta cell function and mass [1,2]

  • Our results showed that long-term exposure of pancreatic beta cells to the HG state but not to the high-fatty-acid state increased DNA methylation of the insulin 1 gene (Ins1) promoter in both time-dependent and concentration-dependent manners

  • Insulin mRNA levels were significantly suppressed by HG incubation, and the actual transcriptional activity of the insulin gene may have been suppressed to a lesser degree doi:10.1371/journal.pone.0115350.g005

Read more

Summary

Introduction

Type 2 diabetes is an insulin insufficiency state caused by decreased pancreatic beta cell function and mass [1,2]. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications and United Kingdom Prospective Diabetes Study showed correlations between transient poor glycemic control and progression of diabetic complications [3,4]. This “metabolic memory” or “legacy effect” phenomenon is partially regulated by epigenetic modification, which causes histone 3 lysine 4 monomethylation in aortic endothelial cells under transient high-glucose states and sustains the high inflammatory cytokine levels under subsequent normoglycemia [5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call