Abstract

AbstractO2‐delivering nanosystems have been used to antagonize hypoxia‐induced tumor therapeutic resistance. However, short‐time oxygen storage is still a bottleneck for these O2‐delivering nanosystems, which results in a decrease in blood circulation time and accumulation of oxygen in tumors, thus reducing the tumor therapeutic efficacy. Herein, a long‐term oxygen storage nanosystem (O2‐PIr@Si@PDA) is designed to overcome hypoxia for the treatment of nasopharyngeal carcinoma. This nanosystem is constructed by using perfluorooctyl bromide (PFOB) core as the oxygen carrier, functionalized with an oxygen sensitive probe (Ir(III) complex) and subsequently enclosed with an ultrathin‐walled silica shell. Due to the silica shell, this nanosystem can store oxygen for longer than 7 days. The oxygen in the O2‐PIr@Si@PDA nanosystem can be released quickly with the temperature‐responsive rupture of the silicon shell under near‐infrared (NIR) irradiation. The oxygen storage and release can be self‐monitored using the Ir(III) complex with its luminescence effect. As expected, this multifunctional nanosystem in combination with NIR irradiation not only inhibits tumor growth by alleviating hypoxia, but also enhances the effect of oxygen‐sensitized radiotherapy against nasopharyngeal carcinoma. Taken together, this study offers a novel strategy for designing long‐term oxygen storing nanosystem to relieve tumor hypoxia, thus improving the precise cancer therapeutic efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.