Abstract
The serotonin system responds to the ovarian steroids, estradiol (E) and progesterone (P), in women and female animal models. In macaques, ovarian steroid administration to ovariectomized (Ovx) individuals improves serotonin neural function through actions on pivotal serotonin-related genes and proteins, such as TPH2 (tryptophan hydroxylase 2), SERT (serotonin reuptake transporter), and the 5HT1A autoreceptor. In addition, ovarian steroid administration reduces gene and protein expression in the caspase-independent pathway and reduces DNA fragmentation in serotonin neurons. This study examines the hypothesis that long-term ovariectomy will lead to a loss of serotonin neurons and compromised gene expression in serotonin neurons. Female Japanese macaques were ovariectomized or tubal ligated (n=5/group) at 3 years of age and returned to their natal troop. After 3 years, the animals were collected, administered a fenfluramine challenge to determine global serotonin availability, and then euthanized. Fev, TPH2, SERT, and 5HT1A expression were examined with digoxigenin in situ hybridization (ISH) and quantitative image analysis. Cell number, positive pixel area, and average pixel density were determined. In the Ovx group, Fev, TPH2, SERT, and 5HT1A showed a significant decease in average and total cell number and positive pixel area. The reduction in Fev-positive neurons suggests that there were fewer serotonin neurons in Ovx animals compared to ovary-intact animals. The decrease in TPH2 in the Ovx animals was consistent with earlier results in 5-month Ovx animals, but it may be due to the decrease in cell number rather than a decrease in expression on an individual cell basis. The decrease in SERT and 5HT1A in long-term Ovx differed from previous studies in short-term Ovx. In summary, long-term ovarian steroid loss resulted in fewer serotonin neurons and overall lower Fev, TPH2, SERT, and 5HT1A gene expression. This may be due to serotonin cell death or to a negative impact on a long-term developmental process in young female macaques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.