Abstract
AbstractNowadays, many extrasolar planetary systems possessing at least one planet on a highly eccentric orbit have been discovered. In this work, we study the possible long-term stability of such systems. We consider the general three body problem as our model. Highly eccentric orbits are out of the Hill stability regions. However, mean motion resonances can provide phase protection and orbits with long-term stability exist. We construct maps of dynamical stability based on the computation of chaotic indicators and we figure out regions in phase space, where the long-term stability is guaranteed. We focus on regions where at least one planet is highly eccentric and attempt to associate them with the existence of stable periodic orbits. The values of the orbital elements, which are derived from observational data, are often given with very large deviations. Generally, phase space regions of high eccentricities are narrow and thus, our dynamical analysis may restrict considerably the valid domain of the system's location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.