Abstract

An analysis based on an elementary theory of plane curves is presented to locate bifurcation points from a main component in the parameter space of a family of optimal fourth-order multiple-root finders. We explore the basic dynamics of the iterative multiple-root finders under the Möbius conjugacy map on the Riemann sphere. A linear stability theory on local bifurcations is developed from the viewpoint of an arbitrarily small perturbation about the fixed point of the iterative map with a control parameter. Invariant conjugacy properties are established for the fixed point and its multiplier. The parameter spaces and dynamical planes are investigated to analyze the underlying dynamics behind the iterative map. Numerical experiments support the theory of locating bifurcation points of satellite and primitive components in the parameter space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.