Abstract

The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.

Highlights

  • Global climate change is expected to increase the occurrence and risk of human exposure to environmental pollutants and toxins, including those associated with cyanobacterial harmful algal blooms (Paerl and Huisman, 2009; Balbus et al, 2013)

  • We reported that inorganic N was a major driver of cyanobacterial population dynamics in the eutrophic lake, Lake Mendota (South Central Wisconsin, USA) and suggested that N stress may stimulate toxic blooms of Microcystis (Beversdorf et al, 2013)

  • We previously defined the toxic phase in Lake Mendota as the time period in which MC concentrations were above 1 μg L−1, the World Health Organization’s (WHO) level for safe drinking water (Who, 1999; Beversdorf et al, 2013)

Read more

Summary

Introduction

Global climate change is expected to increase the occurrence and risk of human exposure to environmental pollutants and toxins, including those associated with cyanobacterial harmful algal blooms (cyanoHABs) (Paerl and Huisman, 2009; Balbus et al, 2013). The success of Carbon–nitrogen metabolism and microcystin production cyanobacteria far has been associated with environmental factors such as elevated water temperature, eutrophication and altered nutrient stoichiometry, and thermal stratification of lakes, as well as physiological adaptations in the ability of cyanobacteria to control their buoyancy, store nutrients, and maximize light use and carbon fixation (Hyenstrand et al, 1998). Ecosystem-based studies have implicated some of the key factors involved in the proliferation of Microcystis blooms, including nitrogen (N), phosphorus (P), light, pH, water temperature, and N: P ratios (Wicks and Thiel, 1990; Kotak et al, 2000; Oh et al, 2001). Fewer studies have directly investigated the expression of microcystin gene transcripts in aquatic systems (Gobler et al, 2007; Sipari et al, 2010; Wood et al, 2011), and improved technologies should facilitate more ecosystem-based transcriptional work, including metatranscriptomics

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call