Abstract

Pine Island Glacier (PIG) is one of the largest contributors to sea level rise in Antarctica. Continuous thinning and frequent calving imply significant destabilization of Pine Island Glacier Ice Shelf (PIGIS). To understand the mechanism of its accelerated disintegration and its future development, we conducted a long-term monitoring and comprehensive analysis of PIGIS, including ice flow velocity, ice shelf fronts, ocean water temperature, rifts, and surface strain rates, based on multi-source satellite observations during 1973–2020. The results reveal that: (1) ice flow velocities of PIGIS increased from 2.3 km/yr in 1973 to 4.5 km/yr in 2020, with two rapid acceleration periods of 1995–2009 and 2017–2020, and its change was highly correlated to the ocean water temperature variation. (2) At least 13 calving events occurred during 1973–2020, with four unprecedented successive retreats in 2015, 2017, 2018, and 2020. (3) The acceleration of ice shelf rifting and calving may correlate to the destruction of shear margins, while this damage was likely a response to the warming of bottom seawater. The weakening southern shear margin may continue to recede, indicating that the instability of PIGIS will continue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.