Abstract

ABSTRACT We investigated the changes in the carbonaceous-aerosol sources and their effects on the long-term elemental carbon (EC) and organic carbon (OC) concentration trends at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, during the period 2004–2013. We obtained the EC and OC concentrations by conducting semi-real-time measurements using a carbon monitor, and performing an offline thermal/optical filter analysis according to the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The annual average concentration of the EC remained constant between 2004 and 2013, but that of the OC decreased at a rate of 0.11 µg C m–3 y–1 (α > 0.05). The secondary OC (SOC)/OC ratio showed an increasing trend from 2004 till 2011, which may have been caused by a reduction in primary emissions of OC and compositional changes in the organic compounds originating in China, from which air pollutants were frequently transported during spring and winter. Although the EC concentration did not change appreciably in either season, the OC concentration decreased at rates of 0.10 µg C m–3 y–1 and 0.11 µg C m–3 y–1 during spring and winter, respectively. We estimated the contributions from the various sources of carbonaceous aerosol, viz., biomass burning, fossil-fuel combustion, and air-pollutant transport from China, based on the OC/EC ratio, which decreased from 5.7 to 2.4 in terms of the annual average. The growing share from fossil-fuel combustion is responsible for the decline in biofuel-burning OC emissions transported from China to CHAAMS.

Highlights

  • Elemental carbon (EC), or black carbon (BC), is known to cause both warming and degraded air quality

  • We investigated the changes in the carbonaceous-aerosol sources and their effects on the long-term elemental carbon (EC) and organic carbon (OC) concentration trends at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) in Okinawa, Japan, during the period 2004– 2013

  • The secondary OC (SOC)/OC ratio showed an increasing trend from 2004 till 2011, which may have been caused by a reduction in primary emissions of OC and compositional changes in the organic compounds originating in China, from which air pollutants were frequently transported during spring and winter

Read more

Summary

Introduction

Elemental carbon (EC), or black carbon (BC), is known to cause both warming and degraded air quality. Air. Aerosol and Air Quality Research | https://aaqr.org pollutants such as BC are called short-lived climate pollutants (SLCPs) (Shindell et al, 2012). Bower et al (2009) reported that the BC concentration decreased 1952–2005 in England, and Kirchstetter et al (2008) reported a decrease 1967–2003 in the ambient BC concentration in San Francisco, California, United States, despite an increase in fuel consumption. These observations were attributed to the successful implementation of technologies controlling BC emissions. The contribution of BC and sulfate concentrations derived from northern Eurasia including East Asia increase in 1989 to 2009 (Hirdman et al, 2010)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call