Abstract

The role of renal cortical and medullary hypoxia in the development of acute kidney injury is controversial, partly due to a lack of techniques for the long-term measurement of intrarenal oxygenation and perfusion in conscious animals. We have, therefore, developed a methodology to chronically implant combination probes to chronically measure renal cortical and medullary tissue perfusion and oxygen tension (tPO2) in conscious sheep and evaluated their responsiveness and reliability. A transit-time flow probe and a vascular occluder were surgically implanted on the left renal artery. At the same operation, dual fiber-optic probes, comprising a fluorescence optode to measure tPO2 and a laser-Doppler probe to assess tissue perfusion, were inserted into the renal cortex and medulla. In recovered conscious sheep (n = 8) breathing room air, mean 24-h cortical and medullary tPO2 were similar (31.4 ± 0.6 and 29.7 ± 0.7 mmHg, respectively). In the renal cortex and medulla, a 20% reduction in renal blood flow (RBF) decreased perfusion (14.6 ± 8.6 and 41.2 ± 8.5%, respectively) and oxygenation (48.1 ± 8.5 and 72.4 ± 8.5%, respectively), with greater decreases during a 50% reduction in RBF. At autopsy, minimal fibrosis was observed around the probes. In summary, we have developed a technique to chronically implant fiber-optic probes in the renal cortex and medulla for recording tissue perfusion and oxygenation over many days. In normal resting conscious sheep, cortical and medullary tPO2 were similar. The responses to and recovery from renal artery occlusion, together with the consistent measurements over a 24-h period, demonstrate the responsiveness and stability of the probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.