Abstract

The effects of organic manure and chemical fertilizer on total soil organic carbon (CT), water-soluble organic C (CWS), microbial biomass C (CMB), labile C (CL), C mineralization, C storage and sequestration, and the role of carbon management index (CMI) in soil quality evaluation were studied under a wheat–maize cropping system in a long-term experiment, which was established in 1989 in the North China Plain. The experiment included seven treatments: (1) OM: application of organic manure; (2) 1/2OMN: application of half organic manure plus chemical fertilizer NPK; (3) NPK: balanced application of chemical fertilizer NPK; (4) NP: application of chemical fertilizer NP; (5) PK: application of chemical fertilizer PK; (6) NK: application of chemical fertilizer NK; and (7) CK: unfertilized control. Application of organic manure (OM and 1/2OMN) was more effective for increasing CT, CWS, CMB, CL, C mineralization, and CMI, as compared with application of chemical fertilizer alone. For the chemical fertilizer treatments, balanced application of NPK (treatment 3) showed higher CT, CWS, CMB, CL, C mineralization, and CMI than the unbalanced use of fertilizers (treatments 4, 5, and 6). The C storage in the OM and 1/2OMN treatments were increased by 58.0% and 26.6%, respectively, over the NPK treatment, which had 5.9–25.4% more C storage than unbalanced use of fertilizers. The contents of CWS, CMB, and CL in organic manure treatments (treatments 1 and 2) were increased by 139.7–260.5%, 136.7–225.7%, and 150.0–240.5%, respectively, as compared to the CK treatment. The CMI was found to be a useful index to assess the changes of soil quality induced by soil management practices due to its significant correlation with soil bulk density and C fractions. The OM and 1/2OMN treatments were not a feasible option for farmers, but a feasible option for sequestering soil carbon, especially for the OM treatment. The NPK treatment was important for increasing crop yields, organic material inputs, and soil C fractions, so it could increase the sustainability of cropping system in the North China Plain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call