Abstract
Snake skins evolved to withstand permanent friction and wear during sliding. Here, the microstructure of ventral scales of the snake Lampropeltis getula californiae was analyzed using scanning electron microscopy, and the long-term dynamic friction behavior was investigated by reciprocating sliding friction tests. A smooth epoxy resin with similar elasticity modulus and hardness was used for comparison purposes. Strong differences in frictional and wear mechanisms between the two materials were revealed in spite of similar mechanical properties. Snake skin showed a considerably lower frictional coefficient that kept stable over several thousands of sliding cycles. A reduction of the stick-slip behavior was also denoted by analyzing the variation of the friction coefficient in the forward and reverse motion influencing the wear mechanism. This frictional behavior can be explained by three different but complementary mechanisms: fibrous layered composite material of the skin with a gradient of material properties, surface microstructure, and the presence of ordered layers of lipid molecules at the skin surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.